DPP - 1 (Magnetic Field \& Force)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/34
https://youtu.be/LbtAgQdCyOI
https://physicsaholics.com/note/notesDetalis/50

Q 1. Which of the following graphs represent variation of magnetic field B with distance r for a straight long wire carrying current
(a)

(c)

(b)

(d)

Q 2. The magnitude of magnetic field due to current carrying arc of radius R, having a current I subtending an angle of 60° at the center O is

(a) $\frac{\mu_{0} I}{8 R}$
(b) $\frac{\mu_{0} I}{10 R}$
(c) $\frac{2 \mu_{0} I}{4 R}$
(d) $\frac{\mu_{0} I}{12 R}$

Q 3. A cell is connected between two points of a uniformly thick circular conductor. I_{1} and I_{2} are the currents flowing in two parts of the circular conductor of radius a. What will be the magnetic field at the center of the loop?
(a) zero
(b) $\frac{\mu_{0}}{4 \pi} \frac{\left(I_{1}+I_{2}\right) \sin 90^{0}}{r^{2}}$
(c) $\frac{\mu_{0}}{4 \pi} \frac{\left(I_{1} I_{2}\right) \sin 90^{\circ}}{r^{2}}$
(d) $\frac{\mu_{0}}{4 \pi} \frac{2\left(I_{1}+I_{2}\right)}{r^{2}}$

Q 4. A cell is connected between the points A and C of a circular conductor ABCD with O as centre and angle $A O C=60^{\circ}$ If B_{1} and B_{2} are the magnitudes of the magnetic fields at O due to the currents in ABC and ADC respectively, then ratio $\frac{B_{1}}{B_{2}}$ is

(a) 1
(b) 2
(b) 3
(d) 4

Q 5. A wire loop PQRSP formed by joining two semicircular wires of radii $R_{1} \& R_{2}$ carries a current I as shown in figure below. The magnitude of magnetic induction at center C is

(a) $\left(\frac{\mu_{0}}{4}\right) I\left[\frac{1}{R_{2}}-\frac{1}{R_{1}}\right]$
(b) $\left(\frac{\mu_{0}}{4}\right) I\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]$
(c) $\left(\mu_{0}\right) I\left[\frac{1}{R_{2}}-\frac{1}{R_{1}^{2}}\right]$
(d) $\left(\mu_{0}\right) I\left[\frac{1}{R_{1}}\right]$

Q 6. A straight section PQ of a circuit lies along the x-axis from $x=-(a / 2)$ to $x=+(a / 2)$ and carries a steady current I. The magnetic field due to the section PQ at a point $x=$ +a will be -
(a) proportional to a
(b) proportional to a^{2}
(c) proportional to ($1 / \mathrm{a}$)
(d) equal to zero

Q 7. V shaped wire is in $x-y$ plane. The direction of the field B at P is -

(a) along $+x$ axis
(b) along $+z$ axis
(c) along -x axis
(d) along $+y$ axis

Q 8. Two very long current carrying wires A and B carrying current I_{0} (along Z-axis) are placed at $(-a, 0)$ and $(a, 0)$ as shown. Find the value of magnetic field at $(0, a)-$

(a) $\frac{\mu_{0} I_{0}}{\sqrt{2} \pi a}$
(b) $\frac{\mu_{0} I_{0}}{2 \pi a}$
(c) $\frac{\mu_{0} I_{0}}{4 \pi a}$
(d) $\frac{\mu_{0} I_{0}}{2 \sqrt{2} \pi a}$

Q 9. The magnetic field at the center of a circular coil of radius r is π times that due to a long straight wire at a distance r from it, for equal currents. Figure here shows three cases: in all cases the circular part has radius 1 and straight ones are infinitely long. For same current the B field at the centre P in cases $1,2,3$, have the ratio:

(a) $-\frac{\pi}{2}: \frac{\pi}{2}: \frac{3 \pi}{4}-\frac{1}{2}$
(b) $-\frac{\pi}{2}-1: \frac{\pi}{2}: \frac{3 \pi}{4}+\frac{1}{2}$
(c) $-\frac{\pi}{2}: \frac{\pi}{2}: 3 \frac{\pi}{4}$
(D) $-\frac{\pi}{2}-1: \frac{\pi}{2}-\frac{1}{4}: \frac{3 \pi}{4}+\frac{1}{2}$

Q 10. Three infinitely long wires each carrying a current 1 A are placed such that one end of each wire is at origin and one of these wires are along x -axis, y -axis and z -axis.
Magnetic induction at point $\mathrm{P}(-2,0,0)$ is -

(a) $\frac{\mu_{0}}{4 \pi}(\hat{\jmath}+\hat{k})$
(b) $\frac{\mu_{0}}{4 \pi}(\hat{\jmath}-\hat{k})$
(c) $\frac{\mu_{0}}{8 \pi}(-\hat{\jmath}+\hat{k})$
(d) $\frac{\mu_{0}}{8 \pi}(\hat{\jmath}+\hat{k})$

Q 11. The magnetic field intensity due to a thin wire carrying current I in the fig is $\frac{\mu_{0} i}{k \pi R}$ ($\pi-$ $\alpha+\tan \alpha$) find the value of k is

(a) 1
(b) 3
(c) 2
(d) 4

Q 12. Ratio of magnetic field at the center of a current carrying coil of radius R and at a distance of 3 R on its axis is -
(a) $10 \sqrt{ } 10$
(b) $20 \sqrt{10}$
(c) $2 \sqrt{ } 10$
(d) $\sqrt{ } 10$

Q 13. Four long and parallel wires each carrying current I are kept at the corners of a square having side a. Magnetic field produced at centre C is $\mathrm{k} \frac{\mu_{0} I}{\pi a}$. find the k

(a) 2
(b) $\sqrt{2}$
(c) 1
(d) $1 / \sqrt{ } 2$

Q 14. The negatively and uniformly charged nonconducting disc as shown is rotated clockwise. The direction of the magnetic field at point A in the plane of the disc is -

(a) into the page
(c) up to the page

Answer Key

Q. 1	d	Q. 2	d	Q. 3	a	Q. 4	a	Q. 5	b
Q. 6	d	Q. 7	b	Q. 8	b	Q.9	a	Q.10	c
Q. 11	c	Q.12 a	Q.13	a	Q.14	a			

